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History Problem Estimates of D(n) Open problems

Cauchy’s mistake?

f : R2 → R is separately continuous iff
all maps t 7→ f (t , y) and t 7→ f (x , t) are continuous.

A theorem in 1821 textbook Cours d’analyse by Cauchy:

A separately cont function of real variables is continuous.

A counterexample, 1884 calculus text by Genocchi and Peano,
included also in the calculus text we currently use:

g(x , y) =

{
xy

x2+y2 for 〈x , y〉 6= 〈0,0〉
0 for 〈x , y〉 = 〈0,0〉

is separately continuous but discontinuous on y = x .

Did Cauchy make mistake?
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Cauchy was right!!!

YES! No contradiction, since Cauchy’s text was written for
the set R of real numbers containing infinitesimals,
rather than nowadays standard set R of reals.

Not surprisingly, since R firmly replaced R in analysis (in the
mid 19th century) the interrelation between continuity and
(generalized) separate continuity was intensely studied.

In particular, the subject was studied, among others, by
E. Heine, H. Lebesgue, G. Peano, R. Baire, W. Sierpiński,
N. Luzin, E. Marczewski, and A. Rosenthal.

Krzysztof Chris Ciesielski Minimal degree of GPE of n variables 2



History Problem Estimates of D(n) Open problems

Another Genocchi-Peano example

f (x , y) =

{
xy2

x2+y4 when (x , y) 6= (0,0)

0 otherwise.
(1)

This function f is discontinuous (along x = y2), but its
restriction to any line (i.e., a hyperplane in R2) is continuous.

For more on this history, see

K.C. Ciesielski and D. Miller, A continuous tale on continuous
and separately continuous functions, Real Anal. Exchange
41(1) (2016), 19-54,

see http://www.math.wvu.edu/˜kcies/publications.html
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Generalizations of xy2

x2+y4 to more variables

g(x) =


x
α1
1 x

α2
2 ···x

αn
n

x
β1
1 +x

β2
2 +···+xβn

n
when x 6= (0,0, . . . ,0),

0 otherwise
(2)

is a Genocchi-Peano example, GPE, if g is discontinuous but
has continuous restriction to any hyperplane in Rn.

Paper (see http://www.math.wvu.edu/˜kcies/publications.html )

K.C. Ciesielski and D. Miller, On a Genocchi-Peano example,
College Math. J., to appear

contains the following characterization of GPEs:
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GPEs characterization theorem

Theorem (KC&DM)

Let g(x) = x
α1
1 x

α2
2 ···x

αn
n

x
β1
1 +x

β2
2 +···+xβn

n
and β1 ≤ β2 ≤ · · · ≤ βn be even.

(i) g is discontinuous iff
∑n

i=1
αi
βi
≤ 1.

(ii) g � H is continuous for every hyperplane H iff
n∑

i=1

αi

βi
− αk

βk
+

αk

βk−1
> 1 for every k ∈ {2, . . . ,n}. (3)

So, g is a GPE iff
∑n

i=1
αi
βi
≤ 1 and (3) holds. Moreover,

(iii) g is a bounded GPE iff
∑n

i=1
αi
βi

= 1 and all βis are distinct.

Proof uses only elementary calculus tools.
Good exercise for math 451 or honors section of math 251.
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Corollary: simple GPEs

g is a bounded GPE iff
∑n

i=1
αi
βi

= 1 and all βis are distinct

immediately implies that the following maps are bounded GPEs:

x1x2 · · · xn−1x2
n

x2
1 + x4

2 + · · ·+ x2n−1

n−1 + x2n
n

x2
1 · · · x2i

i · · · x2n
n

x2n
1 + · · ·+ x2in

i + · · ·+ x2n2
n
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Search for “minimal” GPEs of n-variables

For GPE g(x) = x
α1
1 x

α2
2 ···x

αn
n

x
β1
1 +x

β2
2 +···+xβn

n
its degree is defined D(g) = βn.

Define

D(n) = min{D(g) : g is a GPE of n variables}

Db(n) = min{D(g) : g is a bounded GPE of n variables}

General problem: Find as much as possible on D(n) & Db(n).

By KC&DM theorem, this is a number theoretical problem.

Easy bonds: 2n ≤ D(n) ≤ Db(n) ≤ min{2n,2n2}.

D(n) is discussed below. Almost nothing else is known about
Db(n), except that Db(n) ≤ n(n + 1).
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The values of D(n)s

Let kn = min
{

k ∈ ω :
∑n

i=1
1

k+i ≤ 2
}

.

Theorem (KC, proved last month)
For every n = 2,3,4, . . . we have

kn ∈
{⌊

1
e2 − 1

n
⌋
,

⌈
1

e2 − 1
n
⌉}

(4)

and
D(n) ∈ {2(kn + n),2(kn + n) + 2} . (5)

In particular, for some in ∈ {0,2,4},

D(n) = 2
⌊

e2

e2 − 1
n
⌋
+ in ∈

(
2e2

e2 − 1
n − 2,

2e2

e2 − 1
n + 4

)
⊂ (2.31n − 2,2.32n + 4).
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Lemmas needed in the proof of the new theorem

Proposition (A)

Let g(x) = x
α1
1 x

α2
2 ···x

αn
n

x
β1
1 +x

β2
2 +···+xβn

n
and numbers β1 < β2 < · · · < βn be

even. If
∑n

i=1
αi
βi
≤ 1 <

∑n
i=1

αi
βi

+ 2
βn(βn−2) , then g is a GPE.

Proof.
g clearly satisfies (i) of KC&DM theorem. It satisfies (ii) since∑n

i=1
αi
βi
− αk

βk
+ αk

βk−1
=
∑n

i=1
αi
βi

+ αk
βk−βk−1
βkβk−1

≥∑n
i=1

αi
βi

+ 2
βn(βn−2) > 1.
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The main proposition
Proposition (B)

Let k ,n < ω and βi = 2(k + i). If
∑n

i=1
1
βi
+ 4

βn
≤ 1 & n ≥ k + 2,

then there exist αis such that x
α1
1 x

α2
2 ···x

αn
n

x
β1
1 +x

β2
2 +···+xβn

n
is a GPE.

PROOF. Need to find αi ’s satisfying assumptions of Prop A.

Step 1: Let αi = 1 for all i < n and αn be the largest s.t.
S0 =

∑n
i=1

αi
βi

=
∑n−1

i=1
1
βi
+ αn

βn
≤ 1. Note that αn ≥ 5.

If S0 +
1

βn−1
− 1

βn
> 1, then, by Proposition A, we are done as∑n

i=1
αi
βi

+ 2
βn(βn−2) = S0 +

1
βn−1
− 1

βn
> 1.

So, assume that S0 +
1

βn−1
− 1

βn
≤ 1.
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Continuation of the proof of Proposition B

Step 2: Pick the smallest j ≤ n − 1 with S0 +
1
βj
− 1

βn
≤ 1.

By maximality of αn, S0 +
1
βj
− 1

βn
≤ 1 < S0 +

1
βn

.

So, βn/2 < βj . In particular, j > 1. (Otherwise
k + n = βn/2 < β1 = 2(k + 1), contradicting n ≥ k + 2.)

Modify αi ’s by putting αj = 2 and decreasing αn by 1. Then,

S1 =
∑n

i=1
αi
βi

= S0+
1
βj
− 1
βn
≤ 1 < S0+

1
βj−1
− 1
βn

= S1+
1

βj−1
− 1
βj

.

βn/2 < βj implies βn−1/2 = (βn/2)− 1 ≤ βj − 2 = βj−1. So

1 < S1 +
1

βj−1
− 1

βj
= S1 +

2
βj−1βj

< S1 +
2

βn−1
2

βn
2

= S1 + 4
(

1
βn−1
− 1

βn

)
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Completion of the proof of Proposition B

Step 3: As S1 ≤ 1 < S1 + 4
(

1
βn−1
− 1

βn

)
there is m ≤ 3 s.t.

S1 + m
(

1
βn−1
− 1

βn

)
≤ 1 < S1 + (m + 1)

(
1

βn−1
− 1

βn

)
Modify αi ’s by decreasing αn by m (we will still have αn ≥ 1)
and increasing the previous value of αn−1 by m.

These new αi ’s satisfy assumptions of Proposition A, as∑n
i=1

αi
βi

= S1 + m
(

1
βn−1
− 1

βn

)
≤ 1 <

S1 + (m + 1)
(

1
βn−1
− 1

βn

)
=
∑n

i=1
αi
βi

+ 2
βn(βn−2) , as required.
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One more lemma

Recall that kn = min
{

k ∈ ω :
∑n

i=1
1

k+i ≤ 2
}

.

Lemma

(4) from Theorem holds, as kn ∈
(

1
e2−1n − 1, 1

e2−1n + 1
)

.

Moreover, limn→∞
1

e2−1n/kn = 1.

Sketch of proof.

ln
(

1 + n
k+1

)
=
∫ k+1+n

k+1
1
x dx <

∑n
i=1

1
k+i <

∫ k+n
k

1
x dx = ln

(
1 + n

k

)
∑n

i=1
1

k+i ≤ 2 is ensured when ln
(
1 + n

k

)
≤ 2, i.e., k ≥ 1

e2−1n.
So, kn <

1
e2−1n + 1.∑n

i=1
1

k+i ≤ 2 is false when 2 ≤ ln
(

1 + n
k+1

)
, i.e.,

k ≤ 1
e2−1n − 1. Hence, kn ≥ 1

e2−1n − 1.

(The case when k = 0 needs to be considered separately.)
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Proof of the theorem
Theorem (reminder, main parts)

kn ∈
{⌊

1
e2 − 1

n
⌋
,

⌈
1

e2 − 1
n
⌉}

(6)

D(n) ∈ {2(kn + n),2(kn + n) + 2} (7)

PROOF. (6) was proved in the lemma.

D(n) ≥ 2(kn + n): Let x
α1
1 x

α2
2 ···x

αn
n

x
β1
1 +x

β2
2 +···+xβn

n
be a GPE with

D(n) = D(g) = βn = 2m. By Theorem KC&DM, β1 < · · · < βn
are even and

∑n
i=1

αi
βi
≤ 1. Hence βn−i ≤ 2(m − i) and

1 ≥
n∑

i=1

αi

βi
≥

n∑
i=1

1
βi
≥

n−1∑
i=0

1
2(m − i)

=
1
2

n∑
i=1

1
(m − n) + i

.

So,
∑n

i=1
1

(m−n)+i ≤ 2, kn ≤ m − n, and D(n) = 2m ≥ 2(kn + n).
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Proof of D(n) ≤ 2(kn + n) + 2

First this is proved for n /∈ E = {2,3,4,5,6,7,10,11}.

Note that k = kn + 1 and n /∈ E satisfy assumptions of Prop. B.

n ≥ k + 2: For k = kn + 1 it becomes n − kn ≥ 3. But this holds
for any n ≥ 8, since 1

e2−1 < 0.2 and, by the lemma,
kn <

1
e2−1n + 1, so that

n − kn > n −
(

1
e2−1n + 1

)
> 0.8n − 1 ≥ 0.8 · 8− 1 > 3.

∑n
i=1

1
βi
+ 4

βn
≤ 1, where βi = 2(k + i):

∑n
i=1

1
kn+i ≤ 2. So∑n

i=1
1

k+i =
∑n

i=1
1

kn+i +
1

kn+1+n −
1

kn+1 ≤ 2−
(

1
kn+1 −

1
kn+1+n

)
.

By this and 1
kn+1 −

1
kn+1+n =

(
n

kn+1

)
1

kn+1+n =
(

n
kn+1

)
2
βn

we see

that
∑n

i=1
1
βi

= 1
2
∑n

i=1
1

k+i ≤ 1−
(

n
kn+1

)
1
βn

, that is,∑n
i=1

1
βi
+
(

n
kn+1

)
1
βn
≤ 1.
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Need
∑n

i=1
1
βi
+ 4

βn
≤ 1; have

∑n
i=1

1
βi
+
(

n
kn+1

)
1
βn
≤ 1

It is enough to show that

n
kn + 1

≥ 4 for any n /∈ E . (8)

To see (8), note that n
1

e2−1
n+2
≥ 4 is equivalent to n ≥ 8

1−4 1
e2−1

which holds for n ≥ 22, since 22 > 21.4 > 8
1−4 1

e2−1

. So, (8)

holds for any n ≥ 22 as, using kn <
1

e2−1n + 1, we have
n

kn+1 >
n(

1
e2−1

n+1
)
+1

= n
1

e2−1
n+2
≥ 4.

n 8 9 10 11 12 13 14 15 16 17 18 19 20 21
kn 1 1 2 2 2 2 2 2 2 3 3 3 3 3

For the remaining values of n /∈ E , (8) is justified by the table.
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End of proof: for n ∈ {2,3,4,5,6,7,10,11} see table

n kn a GPE g of n variables D(g) 2(kn + n) + 2

2 0 x1
1 x2

2
x2

1+x4
2

4 6

3 0 x1
1 x3

2 x2
3

x4
1+x6

2+x8
3

8 8

4 1 x2
1 x1

2 x1
3 x2

4
x4

1+x6
2+x8

3+x10
4

10 12

5 1 x1
1 x1

2 x1
3 x2

4 x3
5

x4
1+x6

2+x8
3+x10

4 +x12
5

12 14

6 1 x1
1 x1

2 x2
3 x1

4 x1
5 x2

6
x4

1+x6
2+x8

3+x10
4 +x12

5 +x14
6

14 16

7 1 x1
1 x1

2 x1
3 x1

4 x1
5 x2

6 x2
7

x4
1+x6

2+x8
3+x10

4 +x12
5 +x14

6 +x16
7

16 18

10 2 x1
1 x1

2 x1
3 x1

4 x2
5 x1

6 x1
7 x1

8 x1
9 x4

10
x6

1+x8
2+x10

3 +x12
4 +x14

5 +x16
6 +x18

7 +x20
8 +x22

9 +x24
10

24 26

11 2 x1
1 x1

2 x1
3 x1

4 x1
5 x1

6 x1
7 x1

8 x1
9 x2

10x4
11

x6
1+x8

2+x10
3 +x12

4 +x14
5 +x16

6 +x18
7 +x20

8 +x22
9 +x24

10+x26
11

26 28

Table: GPEs of n ∈ E variables with degrees ≤ 2(kn + n) + 2.
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Open problems on D(n)

Problem (1)
What can be said about the sets
Di =

{
n ≥ 2 : D(n) = 2

⌊
e2

e2−1n
⌋
+ 2i

}
, where i ∈ {0,1,2}?

Are they all infinite?
Notice that the structure of sets Di is related to the structure of
sets Ki =

{
n ≥ 2 : kn =

⌊
1

e2−1n
⌋
+ i
}

, where i ∈ {0,1}, since
K0 ⊂ D0 ∪ D1 and K1 ⊂ D1 ∪ D2.

Clearly, D(n) ≤ 2(kn + n + 1) ≤ 2(kn+1 + (n + 1)) ≤ D(n + 1).

Problem (2)

How big is the set E = {n ≥ 2 : D(n) = D(n + 1)}? Is it infinite?

Notice that E 6= ∅ since 14 ∈ E : D(14) = D(15) = 34.
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Open problems on Db(n)

The values of Db(n)s are considerably harder to estimate.
D(n) ≤ Dn(n) ≤ min{2n,n(n + 1)}
are essentially the best estimates we have.

Problem
Is it possible to express the numbers Db(n) in algebraic terms
in terms of n? If not, is it possible at least of find the upper and
lower bounds of these numbers with the same order O(nδ) of
magnitude?

Problem
What can be shown about the set Z = {n ≥ 2 : Db(n) = D(n)}?
In particular, is it finite? infinite?

Notice, that 2,3 ∈ Z but 4,5,6,7,8 /∈ Z .
The examples for D(n) from Prop (B) cannot work for Db(n)!
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That is all!

Thank you for your attention!
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Extras: how to prove Theorem KC&DM

Theorem (KC&DM)

Let g(x) = x
α1
1 x

α2
2 ···x

αn
n

x
β1
1 +x

β2
2 +···+xβn

n
and β1 ≤ β2 ≤ · · · ≤ βn be even.

(i) g is discontinuous iff
∑n

i=1
αi
βi
≤ 1.

(ii) g � H is continuous for every hyperplane H iff
n∑

i=1

αi

βi
− αk

βk
+

αk

βk−1
> 1 for every k ∈ {2, . . . ,n}. (9)

So, g is a GPE iff
∑n

i=1
αi
βi
≤ 1 and (3) holds. Moreover,

(iii) g is a bounded GPE iff
∑n

i=1
αi
βi

= 1 and all βis are distinct.
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Extras: how to prove Theorem KC&DM

Part (i) of the theorem follows from the fact that, for γ =
∑n

i=1
αi
βi

and d = xβ1
1 + · · ·+ xβn

n , we have |g(x1, . . . , xn)| ≤ dγ−1 and
g
(
t1/β1 , . . . , t1/βn

)
= tγ−1

n . To see the necessity of (9) it is
enough to notice that, for δk =

∑n
i=1

αi
βi
− αk

βk
+ αk

βk−1

and fi(t) defined as t1/βi for i 6= k and as t1/βk−1 for i = k , we
have the equality g(f1(t), . . . , fn(t)) = 1

(n−1)+t(βk/βk−1)−1 tδk−1.

The condition (3) is sufficient since, for every hyperplane given
by an equation xk =

∑k−1
i=1 aixi , we have

|g(x1, . . . , xn)| ≤ Aαk dδk−1, where A =
∑k−1

i=1 |ai |. Finally, the
boundedness claim is justified by
g(x1, . . . , xn) =

1
d1−γ

∏n
i=1

(xi )
αi

dαi/βi
.
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